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Layer tracking, asymptotic, and domain decomposition

David L, Drown, Computing and Communications Div., L.IN1,, Los Alamcs. ‘“’I
87545

Il. C. Y. Chin, Computer Science, lUPIJI, Indianapolis, IN 46205

G. W. Hedstrom, LLNL, L-321, i]. O. Box 808, Livcrmore, CA 94550

T. A, h{antcuffel, University of Colorado Denver, Denver, CO 80202

Abstract

In this paper wc present a preliminary report 011our work on the tracking
of intcrnid layers in a singularly-perturbed collv(’clion-di frusiol) cqu;itionm \\’c
Shcw why SUCII tracking may bu (.l~siriil)l(*,WI(.Iw(’d:io show how to do it using
domain decomposition biased on asymptotic ;lllill~Si S.



,

-2--

I. Introduction.

In this paper we present the analogue of a shock-tmcking scheme for the resolution of
an intwnal layer and its interaction with am ordinary boundary layer at the outflow.
In thn computation of compressible flows at high Mach number there has loi)~ been
competition between shock tracking arid sl.ock capturing, and it is now gcnetally
agreed that both are needed. We genera.lly find that the nur!lber of strong shocks is
small, and they should be tracked in order to assure accuracy of the solution. For
rc=ons of efficiency, however, the large number of weak shocks revcrl.wrating around
the domain should be computed by a reliable shock-capturing scheme such as Roe’s
method [14] or the method OiCckila and Woodward [7]. Shocks a“c not always the
most important features in fluid flOWS,but the tracking of such other phenomena is
still far behind shock tracking. We first show why it may he desirable to track an
internal layer, and then we show how such tracking may be accomplished ViiL d~i[lilill
decomposition.

For the sake of simplicity we ronsidor a spwilic tinlc-i[ldcl)~’lldt!tlt, sin~ulzrly -
perturbed. coils’cction-flifrllsitlll equation
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/r of the reduced equation
ud=U+bd# = F. (1.2)

For more details see the books by Chang and IIowes [1] and Eckhaus [8]. Equa-
tion ( 1.2) is easily solved by the method of characteristics,

(k lhJ ~ db’ ~

Z=a’ z=’ z= “
(1.3)

The first two equations (1.3) define charartcristic curves. It is clear that we cannot
impose the boundary condition U = / at every intersection 01 a characteristic curve
with Ml. Instead, we subdi~-idc i.)fl into threw sets, dcpen~ling on the direction of
the vector (a, b). The inflow boundary 1’1 is the subset of 0{) m which (a, 6) points
into Q, the outflow boundary r. is the subset of LXlon which (a, b) points out of f),
and the tangential boundary r“r is the subset of 0{) on which (a, b) is tangent to W.
For ( 1.3) the boundary condition 1: = f is ilnposcd CJIIIYon the inflow boundary ~l.

It is rc=onahic to (’xpoct 10 have u s f.: for tlw solutions u tJf ( 1.1) wherever
Au is not too large, i.e, wherever u is smooth. [h?callsc of the smoothness (Jf the

Source torn] F and of the cocflirivnts u illl(l 6. the {)lily nwchanism for introducing

nonsmcmth behavior into the solution u of ( 1.1) is through the boundary condition u =
~. One obvious difllculty is that Wr cannot force (r = j cm the outflow and tangclltiill
!Joundarim I’o U I*T. ‘Ile resolution of this difficulty is thi~t there arc boundary Iikyers
across which u changtw rapidly from u s 1) to u = /, Jlore prccisc]y, IVhUII~ is
snlooth the relation u = (1 is true except in tllu following portions {If{1. ‘1’here IIIay
hc what are c,allcd Piiramlic hunch-v /il~(’~S idollg t II(* Iangenl iill I)oulld:iry l’~”,and

!hcrr may I)(!ordinary holltldal.v hmvrrs idoll~ t ho outilow boundary I’(j.

h-t us take a nlOlnPllt to Pxp]aill thu Iorll]imdogy ‘(m]in; Lry tmunddry l:ty’r’ ;111(]

I(I (l~~srrilwits prol)urtiw+. ( ‘onsidor a Imillt /’ on I-(j, 111tho vicinily (II 1’ ~~f’lllilV
t’f)llstruct a t.riulsftlrlll:~tioll (fl, r) ~+ (~, y) SIIClIfllat. 11141i)rij{ill (0, r) = (l).()) is

Illitl)])(’dt~) ttl(’ lJOillt /’. \f’e may further rwlllir(t tll;lt thv pf~rtioll Of il ll(!iglll)[)rlli)(J(l
of lhe origin with ~ > () is Iuapl)d !II1(J !1, SC) tli;it a s(~~lll(~nt of ttl(’ iLKiS f7 =: () is

lllqq)d OII1Oa !Myqllf’flf of f.11(’ 1)1)1: :Iar,v I’(JI III t~’rills of th(! varial)lt’s f7 :111(1r IIIV
(Iiffvrrntiid wluation ( 1.1‘ takm thv form

(7 (? , r ( (1 :,)
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into ( 1.4). If we formally discard all but terms of the order of 1/(, we obtain a rcducui
equation

iia~v = c1djv. (1.6)

The term ordinary boundary layer derives from the fact that ( 1.6) is an orciin’”~v

differential equation. The term exponential boundary layer is also used, bccal. :’ ..
solution V of (1.G) is the sum of a constant and an exponential function. N, .L
bec~use ~/cl < 0, this exponential decreases with increasing ~. Note also tmu in
terms of the variable u the rate of decrease is of the order of exp {-tiu/c}, where K is
an average value of 1~1/~i. \Ve therefore expect the width of the ordinary boundary
layer to be O(c). The book by Chiing and IIowes [1] gives theoretical justification for
all of these heuristic manipulations.

In the vicinity of the tangentkd boundary t_’T we MC the characteristic curves ( 1.3)
to define one set of coordinate lines, and we usc them w the foundation fur iL kJual

rnappin~ ($, t) - (Z, y) ill the viCinily of a pc)int 1>0[1 I’T. 111terms of thcSe LWNdi-

nates ( 1.1 ) take~ the form

\Vc remark that the definition of flow direction implies that C6 >0. \Vc may rrxluirc
that a segment of the axis t = O maps onto a scgmont of the boundary I’T iUILlIhat

positive values of 1 correspond to points in the interior of !2. Thus, the houlldary
laym has to accommodate a rapid transition from u z II for t >0 to u = J ilt t = O.

Let us thcrcforc introdurc the sra.lirlg

9 i=., t=iJf (1,s)

‘1’hisvquat ion is l)iLrilt)()]iC, giving ris(! to thl! tmlll p:iriLldiC t) OlllldiLr~ I;i,wr. l’ur-
thvrmr-rrc, the thirkncss of tho b~ulldilry liL~(’r for ( ].9) is ()( ] ) w’ith rwpw[ ‘..
\Vit h rwpcrt to / the I);lritl)dic l)()~lil(lilry lii~(’r is llli’r(~ff)ro(J[ widt h ()( ~ ), :\g;IIII,
t hcorctic,d justiiit”ation fur thi!so rcm;lrks may IN!fiJund in [I].
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that ( 1.9) is the appropriate reduced equation. \\’c are therefore lcd to the conclusion
that such an internal layer is parabolic in nature and that its width is O(V). \Ve
again refer the reader to [1] for further justification.

In the next section we analyze the behavior of a standard ccntra.1 difference scho~,~
when there is an internal layer tilted at an dI’Igk to the grid, and we show tl,
numerical approximation introduces downstream oscillations unle~s the internal layvr
is resolved. Therefore we must use either a fine grid, an artificial increase oi :hc
viscosity c, or a grid aligned with the layer. Here we are discussing a grid effect, in
that Hedstrorn and Osterheld [13] showed that the numerical errors for a coarse grid
aligned with an internal layer are minimal even at large cell Reynolds numbers.

In Section 3 we present an algorithm for the construction of an orthogonal grid
wit,h one coordinate direction aligned to the vector ficlcl (a, b). I’his mappkg real? ‘ s

the solution of the telegraphers’ equation. In Section 4 we introduce a domain t: .i-
position for a probiem ( 1.1) with an internal layer :11:(Ian ordinary boundary l;lycr. In
this domain decomposition the ordinary boundary Iaycr ano ~ic!intcrmal l;lyt’r have
their own subdomains. and there is a separate suhlonmin for the region where these
layers interact. In addition. in each subdornain a separate numerical method is used,
depending on lhc local Asymptotic buhavior of the solution.
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2. A layer tilted to the grid.

In this section we use a heuristic argument based on the modified equation to show
why it is gener?Jly unwise to permit an internal layer not to be aligned with the
grid. Specifically, we show that the standard central-difference scheme has grid
which are modelled by a modified equation in the style of LVarming and IIye: - ‘
Sce GrifFtths and Sanz-Serna [10] for a more modern exposition on modified cqu~.,, .. .
We shall see that the solutions of the modified equation are integrals of Airy functions,
multiplied by a decaying expnncntid. The oscillations of this Airy function may or
may not be damped by the exponential, depending on the values of a dimensionless
parameter. We also derive the modified equatio.; for the upwind diflcrcncc scheme,

and as may be expected, we find that upwinding adds numcricaf diffusion.

For the discussion here f.e restrict our attention to the speciaJ case when the
coefficients a and b in ( 1.1 ) are constant and the source tcrrn }’ vanishes. ‘f ’hi?ll

for convection with velocity K in the direction (cm #. sin (J) lvc havu t hu cwnvcction-
diffusion equation

Vcos9tizu +\-sin(?L)Uu= {Au.

The rcduccd equation for (2.1) is

and its characteristic curves arc given 1).v

For the discussion here it sufhccs to restrict our ilttc]ltion to directions () <0< r/4.

\\’c rclnark that the sprcial cue f) = O Of flOW I)ilrEdlCl to the gri(l W;LS4*xilfllind I)y

Ifcdstrom and Ostcrhcld [13].

I%r (2.1) wc use a rccttinKuiar domain

f’={(z,y):( )<x<l, o<~<l). (2.1)

‘~lIus, under the ccmdition’, that () ~ O < T/I the inflow I)oun(lilry is ikt J = [) iiIIII :~t

IJ = (), and the other two sid[!s of the rcctanglr compriw~ the outflow houn(fwy. ( II

ill fl(Jw kulldary ~V sl’kt ;L ~){)illt of (]i Srolltilll Jity Y(], ilIlfl Wd III) 1)OS(” th(l (“on(l~ I 11)11S

{(0.5 1 + sgn(y -- y,,)) for x = O,
11=

u f(Jr y = 0.

(2.(;)
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In order to minimize ordinary boundary layers along the outflow boundary, we impose
the reduced equation (2.2) as boundary condition at z = 1 and at y = 1.

Consider the standard central-difference scheme for (2.1 ). We impose a square

grid on Q with mesh size h, and we define the shift operators

T=v(z, y) = U(Z+ h, y), qv(z,y) = I!(z, y+ h). (2.7)

With this notation the central-difference approximation to (2.1) is

+(T= - T=-)J+ E#(Tv-Tv-l). = ( Dv, (2.8)

where D denotes the discrete Laplacian

D= +( Z’=+T,+7;-’ +Ty-’ --If).

On the inflow boundary ~1 the boundary conditions for (2.S) arc (2.5). 011 the oud]ow
boundary I’. we use an upwind discretization of (2.2).

The modified equation for (2.8) is best written in terms of the rotatwl coon.linatc

systcm aligned with Ihc flmv direction

.5 = zcorit7+ (y -- yO)sin 19,

1=
(2.9)

-zsind+ (y – yo)c.r)s~.

\Vc aiso introduce scalings of s wd t in order to derive a nmdified equation in di-
mensionless form and to identify the pertinent pilramcters. It happens that for (2.1)

or (2,S) on the halfplanc z > 0 there is no natural length scale in the direction of the

flOW (the .Q-diWCtiO1l ). 0110 lIli+~ ti W(?I] USC il ]t!ll~th SCiLl(! f. “= 1. I“Or the r(’rtilllgll]ill’

domaiu {1 ddnd in (2,.1) it IS rcasonabh’ to tako f. to l.)rthe width d !I (1, = I ) or
the width of f) in the s-direction (L = scc 0). \\’0 shall see th:lt the natural S(’idi Il#i

for tlw nlodifhi wluation wrrcspOndi ng tO the ctqntral clilfrrcnw method (2.3) ;wc

I’urth{’rmorc, lII(? inlpwtant tlimensionlws p;lrwn:Ltws for (’2.H)art! tlI(I ((III l{(Iy IIf}l(ls

Illlllllwr

(2.11)

/1
) :,

7“ (2,12)
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modified equation for (2.8) is given lJy the following

Theorem. Suppose that U < 8 < T/4. Suppose also chat T < 1 and that
y ~ Rh K 1/7. Then the modified equation for (2.8) is

Remarks. The restriction that y = h/L < 1 is reasonable for numerical com-
putations, since we would want features in the streamwise directio-~ to be resolved.
The condition tnat 7< Rh < l/~ is alw ordinarily satisfied in computations. JVe
have written the modified equation in the form (2.13) in order to provide uniformity
w sin(4t9) + O. The grid-induced oscillations appear only when sin(4t?) # Oand when
nh is moderately l~ge. (Remember that we require Rhy < 1.) Under the condition
that Rh sin(48) is bounded away from zero, the m@dified equation (2.13) takes the
sim r.der form.

sj,l(&le)71/2Ry2 @V.

&V= &V ___
24

(2.14)

In (2.14) the parameter

measures the importance

sin(~6)T1/2Ry
fl—=

24
(2.15)

of the grid-induced numcricid dispersion relative to the
physical diffubion, and no numerically induced oscillations will be observed if /3 is
sufiicicntly small. For boundary data v = sgn(r) a’ ~ = O the solution of (2.14) nlay

be expressed in terms of the Airy function. as is shown by Chin and IIedstrom [3]. In
fact, a Fourier transformation with respect to r shct. ~hat

cm

;+ J 1
V(u, r) = — Qxp

{
iAob*3 - (YJ + iTu’

}
(L’ .

.m i27ru
(2.1(:)

The reference [3] also provides Ilgurcs anti tables of the integrals (2. l~;) [or various

v,alucs of d, The upshot is that whethvr or not there arc oscilli~tiol)s depends on a
parameter

= ~~~1~
ck— (~p)2/3. (’2.17)

If m >2, thr diffusion is dominant, and there arc no OSCil]iLtiOIIS. For [r <2, however,

there is a scquencc of dampml oscillations heluw the I:iyer (r < ()). Ihxausu rk is
ml increasing function of 0, :UJwc prorccd downwind o inrrcases :Lnd Lh(! dilrusiun
ovrntually rcmovus th(’ oscillations.

Soto with rvg;ml to lhc iipplicahility of the nmt~iliwl f!(lUilli(lll lllat ttlr illl(!rllil.1

lil~[’r is ltl~ll~ grid (’(’115W’i[i(’ illld thiLt t]l(’ [NWilliltit!lls h:LVC i\’ilV(’](’ll~t]lS !ip:lllllitlg

III;LIIy grid cvlls. ‘1’his l)(}tliLViOr Il]akrs lllt’ lllodili(’d (’(llliLti(Jll :ll)p]i~iil)]t’, ill I Il;lt 1]1(!
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derivation of a modified equation is based on the assumption that the numerical
solution is smooth relative to the grid. The user of modified equations must always
keep in mind that they are utterly useless in predicting variations in the numerical
solution on the scale of 2 or 3 grid sizes.

Finally, we also remark that the upwind difference scheme

v*(1- T;’)U++- T;’)u = fDu

with the scalings (2.10) has the modified equation

with
Rh

al =1+ —sin(2f?)cos
()

;-9 ,
2A

az = 1 + *(3+ cos(-ld) + 24(cos’8 + sin’ t?))m
Rh

The most significant numerical viscosity adr.lcd by the grid effect is the dcviatif )f
al from 1.

Proof of the theorem. The idea of the modified equation is to make an ansiitz
that the solution of the difl’erence scheme is smooth enough to be represented by a
small number of terms of its ‘Taylor expansion and to usc this expansion t~ identify a
partial differential equation which approximates (2.8) more clmely than the original
equation (2.1) does.

Thus, we begin with the assumption that some smooth function v is a solution
of (2.8). In this c,ase the word ‘smooth’ is taken to mean that wc may use ‘1’~ylor
approximations such as

(2.18)

(or the terms in (2.8). That ,s, we choose to neglect terms in tlw Taylor sorirs

approximation to (2.8) of order i:5 and higher. WC thcrcforc obtain the cquatiou

‘Cose(o.”+:o’v)+vsin’(o,u,+:’)’v)=[( i):v+i); v+ ):(O:V+ i);v) .

‘1’herc tati(m of roordinatcs (2.!)) t Iwn gives

(2.1!))
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L4[v] = +(3+c0s(40))(0~v+ afu)- ‘in(4e)(@~v-dJ@v)+ 3sin2(2e)a:oh

Because we are interested in the effects of the internal layer, we expect deriv j
of v in the t-direction (perpendicular to the layer) to be significantly larger Li~aIl
derivatives in the s-direction. The scalings (2. Iti) are selected to balance the terms
~.u and i?~v in (2.19). Thus, upon substituting (2.10) into (2.19) and dropping terms
smaller than 0(7R~), we obtain

with o as defined by (2.15).

The inexperienced user of modified equations may expect (2.2f?) to scr~’e u a

modified equation fJr (2.8). ‘Wecannot use it because the term in’:olving d$v ren-
ders (2.20) unstable to high-frequency perturbations. The use of such a modified
equation would predict numerical instabilities where there are none, and it is

stance ~f a modified equation not conforming to the difference scheme for phen( .&

of short wave length. The term @u appears in (2.20) because we stoppt’d the Taylor
expansion (2.18) at ~~v, and we went that far because the coellicient @of ~u in (2.20)
is zero when sir.f4d) = O. That is, we must replace d$u by something re~onable but
harmless when P is near zero, and for other values of 9 it need only be something
harmless. Because %u ~ &v when 9 a O, the substitution we make to render i)~~

harmless is that 8$v = il~u. In this way a high-frequency instability is convcrtcd i:lto
an increase of dissipation in the streamwise direction, and it produces our modiiiwl

equation (2.13). (This trick W= also used in [13] in the special case 8 = 0.)

Remarks to mathematicians. The above argument contains some sleight of
hand. ?n particular, the domain Q w= replaced by the half.paces > 0 or, cvluivalcntly,
u > 0. This change removes any ordinary boundary Iaycr which may bc present at
the outflow. In addition, boundary data for (2.13) arc to be applied ilt the rotat(!cl
boundary s = b. \Ve expect these distortion. to introduce discrepancies on]y nca, ,,;;u

point of discontinuity (x, y) = ((),YO).In particular, it appears from our computations
that there needs to be a slight shift of coordinates. SW the comments ccmccrning Fig. 1
!Jclow ~Vehave ~so not .hown that the solution of th(! modified equation (~.lJi) b~:lrs

filly rcwmldance to the solution of the diffcrrur.c schcmc (“2.S). Such a proof would
probably proccd as in [13] with the replaccnwnt of O by tb[! hidfs])a~(! x > (), fol][Jwcd

h,v a ij’ouricr transformation of (2,8) in the y-direction. ‘1’humodifiwi cquatirm (2, 13)
shows that the canonical form of the intogr,al r(~l)r(’s(’lltati(jll~~fI! is

(’2.21)
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with J and the aj dependent on u and T. Furthermore, the integral (2.16) indicates
that f x l,aa ~ @a, a2 z a, and al s T when a >1 and 1~1<1. The integral (2.16)
derived from the modified equation (2.14) is mereiy a nonuniform asymptotic approx-
imation which is valid when ITI< 1, u > 1, and when ~ is bounded away from zero.
\Ve see from the form of (2.21) that a uniform asymptotic estin Ite would require
investigation of the interaction of two saddle points and a pole. kor the case when
sin(4@] = O the situation is simpler because a3 = O and there is only one saddle
point and a pole. Uniform asymptotic for 0 = O are presented in Hedstrom and

Osterheld [13].

A computational example. In our computations to illustrate these oscillations
we located the point of discontinuity at y. = 0.25,we chose coefficients

vcoae =2, Vsin@=l, c = 0.002,

and we used a mesh size of h = 0.02. This gives a ccl.f Reynolds number of moderate
size Rh = 10W, and with L = 1 it gives ~ = 0.02. The scaling (2.10) is therefore

m= 0.(?946, and the value of O in (2.15) is d s 0.598. The cross section at
z = ().8 is shown in Fig. 1, where the solution to (2.8) is shown as a solid currc
and the Airy integral (2.16) is given as dashes. \Ve must admit that in order to

obtain such a good match of the curves, we had to shift the jump for the Airy

integral from yo to y. + h. This could bc because the Airy integral applies to the
rotated coordinate system (s, t) given by (2.9). It should also be noted that there is
a phase difference between the two curves in the oscillatory region. This is a wcl.l-
known deficiency of modified equations, and it results from the nonuniformity of the
asymptotic approximation. :ft the point (t, y) = (0.8, 0.6) near the overshoot the
value the parameter a given by (2.17) is a s 1.29,1. We have oscillations because

(1 < 2.

The numerical mcthorJ we used to SOIVC(2.8) is a combination of ideas from
IHman and Goluh [9] and from Chin and lvlantcuffcl [6]. As in E]man an(J Golub,
we introduce a rod-black ordering on the grid points and do a cyclic reduction to
o!~tain a nine-point ~chcmc on the black grid points. This reduction produces ~

matrix much better conditioned for itcrativu methods. The iterative method use(~ by

Ehnan and Golub is point Jacobi, most!y Lccause they impose NOconstrait:ts on the
direction of flow. In our example the flow i~ onv-dircctiorml, so we follow Chin nnd

hlanteuffcl in using line fhmtis-Scidc! with Iincs tr~uwcrsal to the flow, starting at the

inflow boundary and marching downs trm.ru, \Vc find that this schcmo crmvvrgw vrry

rapid] y, with t hc greatest speeds at hi~h cell N,cynolds numbor~. (Perhaps, wc should
roitoratc that the point 0[ lhis section is tO shr.)w that rapid sOlutiOn (jf the In:ktrix

cquaticm slmul(! not hv tlw primary ohjcctiw’- - its tiulution is ;L poor ;~l)l)r(]xilll;Lli(~ll

t,o the solution of t.hv difhcntiid cquatiou wlIvn tllu pnrillll~?trr )j in (2, 15) is large )
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Fig. 1. Airy aacilbtious.

irnalion to Neumann outflow boundary conditions

ti=u=[l forz = 1,
(~.q~)

i)v u = () fory= 1.

\\’c found this boundary condition to I)v satisfactory [)nly ;or slllidl ccl] l{[Iyndds

number. Rh < S. Othwwise, thvro arr additional small oscil]at:ons with Iwriod 2}1
inducrd by the mismatch ;it the outflow t~f)undary r = 1,
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3. Curvilinear coordinates.

In this section we permit the coefficients a and b in (1.1) to depend on the position
(z, y), and we present a numerical algorithm for generating an orthogonal coordinate
system (a chart) aligned with the given vector field (a, b). Our coordinate system is
derived frcm the characteristic curves. We remark that a somewhat different coordi-
nate transformation based on characteristics was given by Chi a et al. [5].

We again -sume that the vector field (a, 6) h= no stagnation point, so that
Ial + Ibl is bounded away from zero for all (z, y) in Q. For purposes of constructing
the mapping, it k convenient to do an initial scaling so that U2 + b2 = 1. Onc of our
goals is to set up a mapping (s, t) - (z, y) such that Y follows the flow in the sense
that there exists a positive function @for which

Dccause the vector ( -b, a) is orthogonal to (a, b), the orlhogon~ity rcquircmcnt (our

second goal) amounts to the condition

for some positive function t). In a nlomcnt WP shoiv ~hat the scale factors @ and ~

are not arbitrary.

In part, the construction of such a mapping is (WY, because it is cm.syto inte-
grate (3.1 ). AH that is nwlcd is to pick a c.onwnicnt starting point (xO, yo) and to
in~egratc the bystcm

dx
— = 1-1o,

/

.r = Z(Iat .s = O.
( .9
(Y

(3.3)
— = I@, y=yuats= (),
(L9

‘1’hisgives a rurvilirwar cowlinatr lInr in ~1 corrmip(m(iing to a constant V:LIII~ of’ f,

‘1’ho imogc of iI Iinc s = wrist. mtiy h ohtainwl !+!lllili\rl,l’by inlt’gratillg

(3.4)
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from so to S1. Can we be certain that we again arrive at the vertex B? It happens that
this global consistency question has been answered [15], and that what is required is
the vanishing of the Lie bracket [~,, at] = il.dt -018,.

It is easy to see by a short computation that the vanishing of the Lie br,arket
[0.,0,] is equivalent to the systcm of partial differential equations

Upon differentiating the product~ in (3.5) and solving for i)s+ and Old, we find that
a ncccssary and sufllcient condition for consistcmcy is that

!fote that if (a, b) baa been scaled so that Ux+ b2 = 1, then (3,6) takw tlm simpler
form.

d.ti = d(ad,b - bd(a),

oto = !b(bd.u – ftd,b).
(3.7)

\Ve rccognizc the systcm (3.7) as t!lc tclegraphors’ equation, written in terms of
Lie derivatives a.!ong the characteristic CII rvcs, ‘1’hcrcforc, all that is ncwdwl for its

solution is to prescribr valuc~ @ = 1 at t = () and @ = 1 at s = O and to march in the

.9 and I-directions concurrently,

[t should ho wnphasiml that thcor~ticid qucstious remain for this grid -gcnuration

schcmc. In particular, thcrr is no guarantee that the solutions 4 and ~ will IN I)lj.il ivc
iLtid] points in (1. I’ilis ifi important in that the Jacobian of the transforrni~ti[)il \~J.3
4) is given by J = (a~ + bz)c?d~.\Vr rcqui ml at t hc (~utsot t h;Ll (J1 + 1# I)(! boundwl

:i\Vil~ frOm ZCW. ‘rhlls, if W! ilr(! to lllilillt~ill a llollZ(!ro” Jacobiilfl, WY! 11111St Lilk(’ Sl)CCid

nwasurm whwwvrr it happens that ~ < () or @ ~ (), on{” possibility is 10 Ililrli Ilp

;llld pllt a tJollIldW~ 011 thili i(Jr:d (’hilrt. \Vu could thun initialize a nuwf chart illld

r(Jntinur.
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4. 130rnain decomposition for an internal layer.

In this section we present a computational exnmple which uses domain decomposition
to resolve an internal layer. At this point we have not yet implemented tho algorithm
described here, but the final report will have computations. In our algorithm we first
identify the internal and boundary layers, and wc then set up a domail~ dccornp
to segregate them. The domain decomposition is carried out with overlapping
using the tools of Chcsshire and Henshaw [2]. We have ;Lddcd the modification LIitLL

in some subdomains we use the grid-generation algorithm of Section 3.

As our domain Q we usc the square O < z < 1, !l < Y < 1, and on Q wc consider

the convection-diffusion equation

(l+z)o=u +(l-y)d”it= (Au.

As boundary conditions for (4.1) we prcscribu u = O on the bottcml of ‘
11= 1 on the Icft-hand ccfge (z = O), u = 1 cm th(’IIJP(y = l),rind u = .*1Q

right-hal’.d odgc (z = 1).

Note that in (.{. 1 ) v-c have rhoww roefficionls so that there is 110 turning point

in f]. ‘1’hat is, we have I 1 + ZI + I 1- yl boundwl away from zero in !). Note also that
by the discussion in Section 1 the inflow boundary 1’/ consitits of the bottom y = O
ilnd the left-ha.nd .qide z = O of the square H. Furtherrnorc, the tcq~ of the square

u = 1 is a tangential boundary I’~, and the right-hand edge z = 1 is an outflow 1’(),
‘rhe rcd ucml equation is

(l+z)drl~+(l-y)d”l -:(), (4,2)

Lnd its boundary conditiww arc imposmf orl the inflow boundary 1’/. IL w
penN that we tan wrilc down a f’orflilllil (or the tiolut.ion (I of (,1.2), althol:

is IIOt nwossary for our (Iorllairl-[l{’r(lrt]l)tlsitioll algorithm, rrh(l cllarwmtmistic , ., ,(IS

for (4.2) arc Ihc tlypvrholas (x -1 )(y + I ) = MMIS1. ‘1’bus, lhr solution of thr reduc.vl
(quiltion (,1.2) i~

~,= II i[y>r/(r+ l).

\ (1 ify Ct/(* +1).

‘1’hi~givfw us an intornd Iaym along tlw ilypvrlmlfi y = r/(t + I ) nnd (’X[)(Jll(’Illlid

l)ouud;Lry laym iil L.lwoutflow l)oundary J = I, [t happm that W(’ illlp)ml l)(Julldnry

dat;l nlong tllv tnngcrrtinl h(mndary I’,r Nllrh thal :10 Imundary lil~(’r rviidw I Iwrr,

If thrro I)(IJIIwon iL h{mndm.v Imycr alorl~ l’r, wt~muld havo Ill(difid 1IW(I[mlain
[l~rorlll~(jsiti~~lldvwrild Idow S(Ias I() includo ils fhfr(l(ds,
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with 0({) < z < 1 – 0((), (3) thr~.e outftow boundary Iaycrs 0, onc above the
intcrnid layer, one belo~ it, and one interacting with it, (,1) an outer region M a.1.mvc
the internal layer on which u s 1, and (5) an outer region M below the internal l;lyer
on which u s O.

In the two outer regions H we usc a coordinate system derived from t hc charfic:, ‘r.

istics, u described in Sect ion 3. In the internal layer 1 wc usc a parabolic cool
system imposed on the characteristics. ( Ilore prr ~itajls will be given in th .1
report. ) Finally, in the birth B and boundary-l; ‘qions 0 wc use the rncthads

given in the papers by Ilcdstrom and IIowes [11] and [12]. The imrations arc per-
formed in the order: ( 1) the outer regions ‘H, (2) the birth region B, (3) the internal
layer 1, (4) the outflow boundary layers 0. The iterative schcmcs in the subd

are as in [10] and [12].
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